Affiliation:
1. Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
2. Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
Abstract
ABSTRACT
Fungi, including the yeast
Saccharomyces cerevisiae
, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron
in vivo
and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in
ccc1
Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and
ccc1
Δ yeast cells at certain environmental iron concentrations.
IMPORTANCE
Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast
Saccharomyces cerevisiae
lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献