Severe Acute Respiratory Syndrome Coronaviruses with Mutations in the E Protein Are Attenuated and Promising Vaccine Candidates

Author:

Regla-Nava Jose A.1,Nieto-Torres Jose L.1,Jimenez-Guardeño Jose M.1,Fernandez-Delgado Raul1,Fett Craig2,Castaño-Rodríguez Carlos1,Perlman Stanley2,Enjuanes Luis1,DeDiego Marta L.1

Affiliation:

1. Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain

2. Department of Microbiology, University of Iowa, Iowa City, Iowa, USA

Abstract

ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a respiratory disease with a mortality rate of 10%. A mouse-adapted SARS-CoV (SARS-CoV-MA15) lacking the envelope (E) protein (rSARS-CoV-MA15-ΔE) is attenuated in vivo . To identify E protein regions and host responses that contribute to rSARS-CoV-MA15-ΔE attenuation, several mutants (rSARS-CoV-MA15-E*) containing point mutations or deletions in the amino-terminal or the carboxy-terminal regions of the E protein were generated. Amino acid substitutions in the amino terminus, or deletion of regions in the internal carboxy-terminal region of E protein, led to virus attenuation. Attenuated viruses induced minimal lung injury, diminished limited neutrophil influx, and increased CD4 + and CD8 + T cell counts in the lungs of BALB/c mice, compared to mice infected with the wild-type virus. To analyze the host responses leading to rSARS-CoV-MA15-E* attenuation, differences in gene expression elicited by the native and mutant viruses in the lungs of infected mice were determined. Expression levels of a large number of proinflammatory cytokines associated with lung injury were reduced in the lungs of rSARS-CoV-MA15-E*-infected mice, whereas the levels of anti-inflammatory cytokines were increased, both at the mRNA and protein levels. These results suggested that the reduction in lung inflammation together with a more robust antiviral T cell response contributed to rSARS-CoV-MA15-E* attenuation. The attenuated viruses completely protected mice against challenge with the lethal parental virus, indicating that these viruses are promising vaccine candidates. IMPORTANCE Human coronaviruses are important zoonotic pathogens. SARS-CoV caused a worldwide epidemic infecting more than 8,000 people with a mortality of around 10%. Therefore, understanding the virulence mechanisms of this pathogen and developing efficacious vaccines are of high importance to prevent epidemics from this and other human coronaviruses. Previously, we demonstrated that a SARS-CoV lacking the E protein was attenuated in vivo . Here, we show that small deletions and modifications within the E protein led to virus attenuation, manifested by minimal lung injury, limited neutrophil influx to the lungs, reduced expression of proinflammatory cytokines, increased anti-inflammatory cytokine levels, and enhanced CD4 + and CD8 + T cell counts in vivo , suggesting that these phenomena contribute to virus attenuation. The attenuated mutants fully protected mice from challenge with virulent virus. These studies show that mutations in the E protein are not well tolerated and indicate that this protein is an excellent target for vaccine development.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3