Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor

Author:

Barnewall R E1,Rikihisa Y1,Lee E H1

Affiliation:

1. Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus 43210-1092, USA.

Abstract

Ehrlichia chaffeensis is an obligatory intracellular bacterium which infects macrophages and monocytes. Double immunofluorescence labeling was used to characterize the nature of E. chaffeensis inclusion in the human promyelocytic leukemia cell line THP-1. E. chaffeensis was labeled with dog anti-E. chaffeensis serum and fluorescein isothiocyanate-conjugated anti-dog immunoglobulin G (IgG). Lissamine rhodamine-conjugated anti-mouse IgG was used to label various mouse monoclonal antibodies. Ehrlichial inclusions did not fuse with lysosomes, since they were not labeled with anti-CD63 or anti-LAMP-1. The ehrlichial inclusions were slightly acidic, since they weakly accumulated 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine and stained weakly positive for vacuolar type H+ ATPase. Some ehrlichial inclusions were labeled positive with antibodies against HLA-DR, HLA-ABC, and beta2 microglobulin, while other inclusions in the same cell were labeled negative. The inclusions were labeled strongly positive for transferrin receptors (TfRs) and negative for the clathrin heavy chain. Time course labeling for TfRs showed that up to 3 h postinfection, most of the ehrlichial inclusions were negative for TfRs. After 6 h postinfection, 100% of the ehrlichial inclusions became TfR positive and the intensity of labeling was increased during the subsequent 3 days. Reverse transcription-PCR showed a gradual increase in the level of TfR mRNA postinfection, which reached a peak at 24 h postinfection. These results suggest that ehrlichial inclusions are early endosomes which selectively accumulate TfRs and that the ehrlichiae up-regulate TfR mRNA expression.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3