Inhibition of Ehrlichia chaffeensis infection by cell-permeable macrocyclic peptides that bind type IV secretion effector Etf-1

Author:

Lin Mingqun1ORCID,Koley Amritendu2,Zhang Wenqing1,Pei Dehua2,Rikihisa Yasuko1ORCID

Affiliation:

1. Department of Veterinary Biosciences, The Ohio State University , 1925 Coffey Rd, Columbus, OH 43210 , USA

2. Department of Chemistry and Biochemistry, The Ohio State University , 484 West 12th Avenue, Columbus, OH 43210 , USA

Abstract

Abstract Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects monocytes and macrophages, and causes human monocytic ehrlichiosis, an emerging life-threatening infectious disease. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system effector, is essential for Ehrlichia infection of host cells. Etf-1 translocates to mitochondria to block host apoptosis; furthermore, it can bind Beclin 1 (ATG6) to induce cellular autophagy and localize to E. chaffeensis-inclusion membrane to obtain host-cell cytoplasmic nutrients. In this study, we screened a synthetic library of over 320,000 cell-permeable macrocyclic peptides, which consist of an ensemble of random peptide sequences in the first ring and a small family of cell-penetrating peptides in the second ring, for Etf-1 binding. Library screening followed by hit optimization identified multiple Etf-1-binding peptides (with KD values of 1–10 μM) that efficiently enter the cytosol of mammalian cells. Peptides B7, C8, B7-131-5, B7-133-3, and B7-133-8 significantly inhibited Ehrlichia infection of THP-1 cells. Mechanistic studies revealed that peptide B7 and its derivatives inhibited the binding of Etf-1 to Beclin 1, and Etf-1 localization to E. chaffeensis-inclusion membranes, but not Etf-1 localization to the mitochondria. Our results not only affirm the critical role of Etf-1 functions in E. chaffeensis infection, but also demonstrate the feasibility of developing macrocyclic peptides as powerful chemical probes and potential treatment of diseases caused by Ehrlichia and other intracellular pathogens.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3