Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon

Author:

Foster J W1,Park Y K1,Penfound T1,Fenger T1,Spector M P1

Affiliation:

1. Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688.

Abstract

In Salmonella typhimurium, de novo synthesis of NAD is regulated through the transcriptional control of the nadA and nadB loci. Likewise, the pyridine nucleotide salvage pathway is controlled at pncB. The transcriptional expression of these three loci is coordinately regulated by the product of nadR. However, there is genetic evidence suggesting that NadR is bifunctional, serving in both regulatory and transport capacities. One class of mutations in the nadR locus imparts a transport-defective PnuA- phenotype. These mutants retain regulation properties but are unable to transport nicotinamide mononucleotide (NMN) intact across the cell membrane. Other nadR mutants lose both regulatory and transport capabilities, while a third class loses only regulatory ability. The unusual NMN transport activity requires both the PnuC and NadR proteins, with the pnuC locus residing in an operon with nadA. To prove that nadR encoded a single protein and to gain insight into a regulatory target locus, the nadR and nadA pnuC loci were cloned and sequenced. A DNA fragment which complemented both regulatory and transport mutations was found to contain a single open reading frame capable of encoding a 409-amino-acid protein (47,022 daltons), indicating that NadR is indeed bifunctional. Confirmation of the operon arrangement for nadA and pnuC was obtained through the sequence analysis of a 2.4-kilobase DNA fragment which complemented both NadA and PnuC mutant phenotypes. The nadA product, confirmed in maxicells, was a 365-amino-acid protein (40,759 daltons), while pnuC encoded a 322-amino-acid protein (36,930 daltons). The extremely hydrophobic (71%) nature of the PnuC protein indicated that it was an integral membrane protein, consistent with its central role in the transport of NMN across the cytoplasmic membrane. The results presented here and in previous studies suggest a hypothetical model in which NadR interacts with PnuC at low internal NAD levels, permitting transport of NMN intact into the cell. As NAD levels increase within the cell, the affinity of NadR for the operator regions of nadA, nadB, and pncB increases, repressing the transcription of these target genes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3