Production of 1,2-propanediol from glycerol in Klebsiella pneumoniae GEM167 with flux enhancement of the oxidative pathway

Author:

Jo Min-Ho,Ju Jung-Hyun,Heo Sun-Yeon,Cho Jaehoon,Jeong Ki Jun,Kim Min-Soo,Kim Chul-Ho,Oh Baek-Rock

Abstract

Abstract Background To support the sustainability of biodiesel production, by-products, such as crude glycerol, should be converted into high-value chemical products. 1,2-propanediol (1,2-PDO) has been widely used as a building block in the chemical and pharmaceutical industries. Recently, the microbial bioconversion of lactic acid into 1,2-PDO is attracting attention to overcome limitations of previous biosynthetic pathways for production of 1,2-PDO. In this study, we examined the effect of genetic engineering, metabolic engineering, and control of bioprocess factors on the production of 1,2-PDO from lactic acid by K. pneumoniae GEM167 with flux enhancement of the oxidative pathway, using glycerol as carbon source. Results We developed K. pneumoniae GEM167ΔadhE/pBR-1,2PDO, a novel bacterial strain that has blockage of ethanol biosynthesis and biosynthesized 1,2-PDO from lactic acid when glycerol is carbon source. Increasing the agitation speed from 200 to 400 rpm not only increased 1,2-PDO production by 2.24-fold to 731.0 ± 24.7 mg/L at 48 h but also increased the amount of a by-product, 2,3-butanediol. We attempted to inhibit 2,3-butanediol biosynthesis using the approaches of pH control and metabolic engineering. Control of pH at 7.0 successfully increased 1,2-PDO production (1016.5 ± 37.3 mg/L at 48 h), but the metabolic engineering approach was not successful. The plasmid in this strain maintained 100% stability for 72 h. Conclusions This study is the first to report the biosynthesis of 1,2-PDO from lactic acid in K. pneumoniae when glycerol was carbon source. The 1,2-PDO production was enhanced by blocking the synthesis of 2,3-butanediol through pH control. Our results indicate that K. pneumoniae GEM167 has potential for the production of additional valuable chemical products from metabolites produced through oxidative pathways.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3