Affiliation:
1. Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
2. Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agricultural and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Abstract
Niacin is indispensable for the growth and development of aquatic animals. However, the correlations between dietary niacin supplementations and the intermediary metabolism of crustaceans are still poorly elucidated. This study explored the effects of different dietary niacin levels on the growth, feed utilization, energy sensing, and glycolipid metabolism of oriental river prawn Macrobrachium nipponense. Prawns were fed with different experimental diets containing graded niacin levels (15.75, 37.62, 56.62, 97.78, 176.32, and 339.28 mg/kg, respectively) for 8 weeks. Weight gain, protein efficiency, feed intake, and hepatopancreas niacin contents all maximized in the 176.32 mg/kg group with significance noted with the control group (
), whereas the opposite was true for feed conversion ratio. Hepatopancreas niacin concentrations increased significantly (
) as dietary niacin levels increased, and peaked at the 339.28 mg/kg group. Hemolymph glucose, total cholesterol, and triglyceride concentrations all maximized in the 37.62 mg/kg group, while total protein concentration reached the highest value in the 176.32 mg/kg group. The hepatopancreas mRNA expression of AMP-activated protein kinase α and sirtuin 1 peaked at the 97.78 and 56.62 mg/kg group, respectively, and then both decreased as dietary niacin levels increased furtherly (
). Hepatopancreas transcriptions of the genes related to glucose transportation, glycolysis, glycogenesis, and lipogenesis all increased with increasing niacin levels up to 176.32 mg/kg, but decreased significantly (
) as dietary niacin levels increased furtherly. However, the transcriptions of the genes related to gluconeogenesis and fatty acid β-oxidation all decreased significantly (
) as dietary niacin levels increased. Collectively, the optimum dietary niacin demand of oriental river prawn is 168.01-169.08 mg/kg. In addition, appropriate doses of niacin promoted the energy-sensing capability and glycolipid metabolism of this species.
Funder
Jiangsu Agriculture Industry Technology System
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献