Oxidation in Retrieved, Never-Irradiated UHMWPE Bearings

Author:

Currier Barbara H.1ORCID,Jevsevar Kori C.1ORCID,Van Citters Douglas W.1ORCID

Affiliation:

1. Dartmouth College, Hanover, New Hampshire

Abstract

Background:Published analyses of never-irradiated, ethylene oxide (EtO)-sterilized tibial inserts and EtO- and gas plasma (GP)-sterilized acetabular ultra-high molecular weight polyethylene (UHMWPE) retrievals demonstrated minimal UHMWPE in vivo oxidation, whereas another analysis of EtO-sterilized acetabular liners found elevated oxidation linked with in vivo stresses. This study explored whether never-irradiated UHMWPE bearings are (1) oxidized by the in vivo environment, and (2) more likely to oxidize in higher-stress articulations (knee, ankle, shoulder).Methods:An institutional review board-approved retrieval archive was queried for never-irradiated, EtO- and GP-sterilized UHMWPE bearings received at revision from 2001 to 2021. A total of 193 EtO-sterilized and 112 GP-sterilized conventional UHMWPE retrievals were analyzed (0 to 25 years in vivo; 133 hip, 144 knee, 18 ankle, and 10 shoulder). Retrieved implants were evaluated for in vivo damage and analyzed for trans-vinylene and ketone content by Fourier transform infrared spectroscopy (FTIR). Twelve never-implanted EtO-sterilized tibial knee inserts, (shelf-aged 5 to 19 years) were non-oxidized controls. Mechanical properties of 3 never-implanted and 3 retrieved tibial inserts were evaluated by ASTM Type-V uniaxial tensile testing. Statistical analyses evaluated correlations between time in vivo and oxidation, and compared mean oxidation rates by articulation.Results:Burnishing was the most common clinical damage for all articulations. Eight retrievals exhibited oxidation-related fatigue damage. All retrievals were validated as never-irradiated (median trans-vinylene index [TVI] = 0.000). Maximum ketone oxidation in retrievals correlated with in vivo time (p < 0.001). Thirty-seven percent of retrievals exhibited UHMWPE (subsurface) oxidation, most frequently ankle, knee, and glenoid inserts. Tensile properties differed between retrieved and never-implanted inserts, changing with oxidation. The oxidation rate differed significantly among the articulations (p < 0.001).Conclusions:This study cohort confirmed the presence of in vivo oxidation in some non-irradiation-sterilized UHMWPE bearings, with higher-stress articulations (knee, ankle, shoulder) showing evidence of oxidation more frequently and having significantly higher oxidation rates than hips. Mechanical properties degraded by oxidation led to fatigue damage in 8 retrievals after a long duration in vivo.Clinical Relevance:Conventional EtO- or GP-sterilized UHMWPE bearings are at minimal risk for fatigue damage secondary to oxidation. However, higher stresses and longer time in vivo (more cycles of use) can lead to increased wear, oxidation, and fatigue damage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3