Fractional order ATR-FTIR differential spectroscopy for detection of weak bands and assessing the radiation modifications in gamma sterilized UHMWPE

Author:

Saeed Muhammad Mudassir,Mehmood Malik Sajjad,Muddassar MuhammadORCID

Abstract

This study presents a new method for identifying radiation modifications in UHMWPE polymer samples. The method involves using a mathematical technique called fractional order differential transformation on IR spectra obtained through ATR-FTIR spectroscopy. This new method was compared to existing techniques such as FTIR, XRD, and DSC, and it was found to be more sensitive and accurate in detecting radiation-induced changes in the polymer. The study focused on identifying changes in weak IR bands in the UHMWPE samples caused by gamma sterilization while simulating IR spectra using different orders of fractional derivatives and compared them to experimental spectra. It was found that applying a lower order of differentiation was more suitable for identifying radiation-induced changes in the UHMWPE samples. Using this method, they were able to identify specific changes in the gamma irradiated structure, such as the splitting of a single absorption peak into a doublet, which was only present in the 50 kGy irradiated sample. The study also used correlation index analysis, principal component analysis, and hierarchy cluster analysis to analyze the simulated and experimental spectra. These techniques allowed to confirm the effectiveness of the fractional order differential transformation method and to identify the specific regions of the IR spectra that were affected by radiation-induced changes in the UHMWPE samples. Overall, this study presents a new method for identifying radiation-induced changes in UHMWPE polymer samples that is more sensitive and accurate than existing techniques. By identifying these changes, researchers can better understand the effects of gamma sterilization on medical equipment and potentially develop new methods for sterilization that do not damage the equipment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives;MY Khalid;Journal of Manufacturing Processes,2022

2. Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites;H-Y Zhao;Nano-Micro Letters,2022

3. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review;H Zheng;Composites Part B: Engineering,2022

4. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics;P Tan;Nature communications,2022

5. Assessment of γ-sterilization and/or cross linking effects on orthopedic biomaterial using optical diffuse reflectance spectroscopy;MS Mehmood;Optik,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3