Use of laboratory equipment for analysis of external quality of food maize kernel
-
Published:2022-04-11
Issue:
Volume:16
Page:161-174
-
ISSN:1337-0960
-
Container-title:Potravinarstvo Slovak Journal of Food Sciences
-
language:
-
Short-container-title:Potr. S. J. F. Sci.
Author:
Angelovič MarekORCID, Angelovič MichalORCID, Jobbágy JánORCID, Krištof KolomanORCID
Abstract
The purpose of this study was to investigate the influence of the parameters of the grain air-sieve cleaner in laboratory conditions on the external quality of food maize (Zea mays L.) kernel in terms of the design for the selection of a suitable sieve mesh for cleaning procedures. The object of the research was maize kernel, variety Pionier P0216, year of cultivation 2019. The available laboratory equipment was used in the study. To evaluate the external quality of food maize kernel, indicators were determined, which were investigated before and after cleaning. An Asus notebook computer with software from Microsoft Windows XP and Ofice 2010 was used to evaluate the measurement results. These results were achieved: an average bulk density of 846.77 kg.m-3 was found in the input sample of food maize kernel after harvest, admixtures before cleaning reached an average of 19.1% and impurities of 2.76%, cleanliness of kernels before cleaning averaged 76.9%, the output after cleaning expressed in terms of bulk density reached an average value of 851.15 kg.m-3, admixtures after cleaning reached 0.07% and impurities 4.21%, clean kernels after cleaning reached 94.86% and damage kernels after cleaning decreased slightly by separation of fragments and chipped kernels. In conclusion, it was stated that the laboratory technique for post-harvest treatment of grain is at a high level worldwide. Currently, the issue of post-harvest processing of grain in Slovakia is addressed at an average level. Post-harvest processing and storage of grain in terms of enginery and technological and economic aspects is little researched in the Slovak Republic, so these issues are open to further research.
Funder
Agentúra na Podporu Výskumu a Vývoja
Publisher
HACCP Consulting
Reference50 articles.
1. Modi, B., Timilsina, H., Bhandari, S., Achhami, A., Pakka, S., Shrestha, P., Kandel, D., GC, D. B., Khatri, S., Chhetri, P. M., & Parajuli, N. (2021). Current Trends of Food Analysis, Safety, and Packaging. In A. Al-Alawi (Ed.), International Journal of Food Science (Vol. 2021, pp. 1–20). Hindawi Limited. https://doi.org/10.1155/2021/9924667 2. Mishra, G., Barfidokht, A., Tehrani, F., & Mishra, R. (2018). Food Safety Analysis Using Electrochemical Biosensors. In Foods (Vol. 7, Issue 9, p. 141). MDPI AG. https://doi.org/10.3390/foods7090141 3. Fukuda, K. (2015). Food safety in a globalized world. In Bulletin of the World Health Organization (Vol. 93, Issue 4, pp. 212–212). WHO Press. https://doi.org/10.2471/blt.15.154831 4. Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne Illness Acquired in the United States—Major Pathogens. In Emerging Infectious Diseases (Vol. 17, Issue 1, pp. 7–15). Centers for Disease Control and Prevention (CDC). https://doi.org/10.3201/eid1701.p11101 5. García-Cañas, V., Simó, C., Herrero, M., Ibáñez, E., & Cifuentes, A. (2012). Present and Future Challenges in Food Analysis: Foodomics. In Analytical Chemistry (Vol. 84, Issue 23, pp. 10150–10159). American Chemical Society (ACS). https://doi.org/10.1021/ac301680q
|
|