Statistical Inference and Decision Making in Conservation Biology

Author:

SALTZ DAVID1

Affiliation:

1. Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev

Abstract

Since the formulation of hypothesis testing by Neyman and Pearson in 1933, the approach has been subject to continuous criticism. Yet, until recently this criticism, for the most part, has gone unheeded. The negative appraisal focuses mainly on the fact thatP-valuesprovide no evidential support for either the null hypothesis (H0) or the alternative hypothesis (Ha). Although hypothesis testing done under tightly controlled conditions can provide some insight regarding the alternative hypothesis based on the uncertainty ofH0, strictly speaking, this does not constitute evidence. More importantly, well controlled research environments rarely exist in field-centered sciences such as ecology. These problems are manifestly more acute in applied field sciences, such as conservation biology, that are expected to support decision making, often under crisis conditions. In conservation biology, the consequences of a Type II error are often far worse than a Type I error. The "advantage" afforded toH0by setting the probability of committing a Type I error (α) to a low value (0.05), in effect, increases the probability of committing a Type II error, which can lead to disastrous practical consequences. In the past decade, multi-model inference using information-theoretic or Bayesian approaches have been offered as better alternatives. These techniques allow comparing a series of models on equal grounds. Using these approaches, it is unnecessary to select a single "best" model. Rather, the parameters needed for decision making can be averaged across all models, weighted according to the support accorded each model. Here, I present a hypothetical example of animal counts that suggest a possible population decline, and analyze the data using hypothesis testing and an information-theoretic approach. A comparison between the two approaches highlights the shortcomings of hypothesis testing and advantages of multi-model inference.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3