A Novel Approach to Improve the Performance of the Database Storing Big Data with Time Information

Author:

TAŞYÜREK Murat1ORCID

Affiliation:

1. Kayseri University

Abstract

Big data is defined as data sets that are too large and/or complex to be processed by classical data processing methods. Big data analysis is essential because it enables more competent business movements, more efficient operations, and higher profits by using the data of institutions and organizations. However, large datasets are difficult to analyze because they are produced quickly, require large storage areas in computer systems, and the diversity of their data. In this study, a new approach using the denormalization method is proposed to accelerate the response time of the database in database systems where large volumes of data containing historical information are stored. Denormalization is defined as the process of adding rows or columns that are not needed to increase the reading performance of the database to the database system that has been normalized. In the proposed approach in this study, a large-volume dataset consisting of real spatial data belonging to Kayseri Metropolitan Municipality, containing temporal information and having approximately 96,000,000 row records, was used. In the proposed approach, the response time of the query is accelerated by recording the time information as numbers to increase the query performance of large volumes of data recorded in date format due to the temporal query process. The performance of the proposed method is compared with the performance of the normalization method using actual data on Microsoft SQL Server and Oracle database systems. The method proposed in the experimental evaluations shows that it works approximately eight times faster. In addition, the experimental results showed that the proposed method improves query performance more than the normalization-based method as the data size increases.

Funder

Kayseri Üniversitesi

Publisher

Balkan Journal of Electrical & Computer Engineering (BAJECE)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3