SDPH: a new technique for spatial detection of path holes from huge volume high-resolution raster images in near real-time

Author:

Tasyurek Murat

Abstract

AbstractDetecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as $$256\times 256$$ 256 × 256 dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.

Funder

the Scientific and Technical Research Council of Turkey

Kayseri University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3