Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
Author:
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Link
http://link.springer.com/content/pdf/10.1007/s12273-020-0723-1.pdf
Reference173 articles.
1. Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K (2017). Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy and Buildings 141: 96–113.
2. Ahmad T, Chen H, Guo Y, Wang J (2018). A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. Energy and Buildings 165: 301–320.
3. Amasyali K, El-Gohary NM (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews 81: 1192–1205.
4. An J, Yan D, Hong T (2018). Clustering and statistical analyses of airconditioning intensity and use patterns in residential buildings. Energy and Buildings 174: 214–227.
5. Andriamamonjy A, Saelens D, Klein R (2018). An auto-deployed model-based fault detection and diagnosis approach for Air Handling Units using BIM and Modelica. Automation in Construction 96: 508–526.
Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring automated energy optimization with unstructured building data: A multi-agent based framework leveraging large language models;Energy and Buildings;2024-11
2. Evaluating missing data handling methods for developing building energy benchmarking models;Energy;2024-11
3. Distribution and correlation analysis of typical features of electricity use profiles in non-residential buildings;Journal of Building Engineering;2024-10
4. A framework of a data-driven model for ship performance;Ocean Engineering;2024-10
5. Semantic model-based large-scale deployment of AI-driven building management applications;Automation in Construction;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3