New application of artificial neural network-based direct power control for permanent magnet synchronous generator

Author:

Akkouchi K.ORCID,Rahmani L.ORCID,Lebied R.ORCID

Abstract

Purpose. This article proposes a new strategy for Direct Power Control (DPC) based on the use of Artificial Neural Networks (ANN-DPC). The proposed ANN-DPC scheme is based on the replacement of PI and hysteresis regulators by neural regulators. Simulation results for a 1 kW system are provided to demonstrate the efficiency and robustness of the proposed control strategy during variations in active and reactive power and in DC bus voltage. Methodology. Our strategy is based on direct control of instant active and reactive powers. The voltage regulator and hysteresis are replaced by more efficient and robust artificial neuron networks. The proposed control technique strategy is validated using MATLAB / Simulink software to analysis the working performances. Results. The results obtained clearly show that neuronal regulators have good dynamic performances compared to conventional regulators (minimum response time, without overshoots). Originality. Regulation of continuous bus voltage and sinusoidal currents on the network side by using artificial neuron networks. Practical value. The work concerns the comparative study and the application of DPC based on ANN techniques to achieve a good performance control system of the permanent magnet synchronous generator. This article presents a comparative study between the conventional DPC control and the ANN-DPC control. The first strategy based on the use of a PI controller for the control of the continuous bus voltage and hysteresis regulators for the instantaneous powers control. In the second technique, the PI and hysteresis regulators are replaced by more efficient neuronal controllers more robust for the system parameters variation. The study is validated by the simulation results based on MATLAB / Simulink software.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3