Computer simulation of operation plant effective modes for water disinfection by electrical discharges in gas bubbles

Author:

Boiko M. I.ORCID,Tatkova K. S.ORCID

Abstract

Purpose. Determination by means of computer simulation of the most efficient modes of operation of the installation for water disinfection using discharges in gas bubbles, in which (modes) the amplitude of voltage pulses at the processing unit and on the layer of treated water is not less than the voltage amplitude immediately after the switching discharger. Methodology. To achieve this goal, we used computer simulation using Micro-Cap 10. We used two different electrical circuits that simulate the operation of the experimental setup in two different modes: in a mode with a restoring electrical strength of the discharge gap in the gas bubble between two adjacent voltage pulses on the discharge node and in the mode without restoring this dielectric strength. In computer simulation, we varied the following factors: the maximum simulation step, inductances, capacitances, active resistances, wave resistance of a long line, and the delay time for the operation of a spark gap simulating a discharge gap in a gas bubble. Results. Computer modeling has shown that in order to increase the voltage amplitude at the treatment unit and on the layer of treated water, it is necessary to reduce the load capacitance – the capacitance of the water layer in the treatment unit to 10 pF or less, to increase the active resistance of the water layer to 500 W or more. An important factor for increasing the voltage and electric field strength in the discharge unit and, consequently, for increasing the efficiency of treated water disinfection is the discharge delay time in gas bubbles. The most rational delay time for the operation of the arrester, which is the gap in the gas bubble inside the water, under the conditions considered by us is 4–5 ns. It is with this delay time that the amplitude of voltage pulses at the node of disinfecting water treatment and on the layer of treated water is maximum, all other things being equal. Furthermore, with such a delay time this amplitude of voltage pulses significantly exceeds the voltage amplitude directly after the main high-voltage discharger, switching energy from the high-voltage capacitive storage to the processing unit through a long line filled with water. Originality. Using computer simulation, we have shown the possibility of increasing the voltage at the discharge unit of the experimental setup by 35 % without increasing the voltage of the power source. This provides a higher efficiency of microbiological disinfection of water by nanosecond discharges in gas bubbles and lower specific energy consumption. Practical value. The obtained results of computer simulation confirm the prospect of industrial application of installations using nanosecond discharges for disinfection and purification of wastewater, swimming pools and post-treatment of tap water.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3