Artificial neural network and discrete wavelet transform for inter-turn short circuit and broken rotor bars faults diagnosis under various operating conditions

Author:

Rouaibia R.ORCID,Djeghader Y.ORCID,Moussaoui L.ORCID

Abstract

Introduction. This work presents a methodology for detecting inter-turn short circuit (ITSC) and broken rotor bars (BRB) fault in variable speed induction machine controlled by field oriented control. If any of these faults are not detected at an early stage, it may cause an unexpected shutdown of the industrial processes and significant financial losses. Purpose. For these reasons, it is important to develop a new diagnostic system to detect in a precautionary way the ITSC and BRB at various load condition. We propose the application of discrete wavelet transform to overcome the limitation of traditional technique for no-stationary signals. The novelty of the work consists in developing a diagnosis system that combines the advantages of both the discrete wavelet transform (DWT) and artificial neural network (ANN) to identify and diagnose defects, related to both ITSC and BRB faults. Methods. The suggested method involves analyzing the electromagnetic torque signal using DWT to calculate the stored energy at each level of decomposition. Then, this energy is applied to train neural network classifier. The accuracy of ANN based on DWT, was improved by testing different orthogonal wavelet functions on simulated signal. The selection process identified 5 pertinent wavelet energies, concluding that, Daubechies44 (db44) is the best suitable mother wavelet function for effectively detecting and classifying failures in machines. Results. We applied numerical simulations by MATLAB/Simulink software to demonstrate the validity of the suggested techniques in a closed loop induction motor drive. The obtained results prove that this method can identify and classify these types of faults under various loads of the machine. References 31, table 1, figures 9.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3