Low-protein diet in puberty impairs testosterone output and energy metabolism in male rats

Author:

de Oliveira Júlio Cezar123,de Moura Egberto Gaspar2,Miranda Rosiane Aparecida14,de Moraes Ana Maria Praxedes1,Barella Luiz Felipe1,da Conceição Ellen Paula Santos2,Gomes Rodrigo Mello5,Ribeiro Tatiane Aparecida1,Malta Ananda1,Martins Isabela Peixoto1,Franco Claudinéia Conationi da Silva1,Lisboa Patrícia Cristina2,Mathias Paulo Cezar de Freitas1

Affiliation:

1. 1Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil

2. 2Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

3. 3Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop, Brazil

4. 4Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

5. 5Departamento de Ciências Fisiológicas, Universidade Federal de Goiás, Goiânia, Brazil

Abstract

We examined the long-term effects of protein restriction during puberty on the function of hypothalamic–pituitary–adrenal (HPA) and hypothalamic–pituitary–gonadal (HPG) axes in male rats. Male Wistar rats from the age of 30 to 60 days were fed a low-protein diet (4%, LP). A normal-protein diet (20.5%) was reintroduced to rats from the age of 60 to 120 days. Control rats were fed a normal-protein diet throughout life (NP). Rats of 60 or 120 days old were killed. Food consumption, body weight, visceral fat deposits, lipid profile, glycemia, insulinemia, corticosteronemia, adrenocorticotropic hormone (ACTH), testosteronemia and leptinemia were evaluated. Glucose-insulin homeostasis, pancreatic-islet insulinotropic response, testosterone production and hypothalamic protein expression of the androgen receptor (AR), glucocorticoid receptor (GR) and leptin signaling pathway were also determined. LP rats were hypophagic, leaner, hypoglycemic, hypoinsulinemic and hypoleptinemic at the age of 60 days (P < 0.05). These rats exhibited hyperactivity of the HPA axis, hypoactivity of the HPG axis and a weak insulinotropic response (P < 0.01). LP rats at the age of 120 days were hyperphagic and exhibited higher visceral fat accumulation, hyperleptinemia and dyslipidemia; lower blood ACTH, testosterone and testosterone release; and reduced hypothalamic expression of AR, GR and SOCS3, with a higher pSTAT3/STAT3 ratio (P < 0.05). Glucose-insulin homeostasis was disrupted and associated with hyperglycemia, hyperinsulinemia and increased insulinotropic response of the pancreatic islets. The cholinergic and glucose pancreatic-islet responses were small in 60-day-old LP rats but increased in 120-day-old LP rats. The hyperactivity of the HPA axis and the suppression of the HPG axis caused by protein restriction at puberty contributed to energy and metabolic disorders as long-term consequences.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3