Puberty as a DOHaD programming window: high-fat diet induces long-term hepatic dysfunction in male rats

Author:

dos Santos Beatriz Gonçalves,Miranda Rosiane Aparecida,Saavedra Lucas Paulo JacintoORCID,Francisco Flávio Andrade,Ribeiro Maiara Vanusa Guedes,Oliveira Ferreira Anna Rebeka,Ferreira-Junior Marcos DivinoORCID,Cavalcante Keilah Valéria Naves,Xavier Carlos HenriqueORCID,de Moura Egberto GasparORCID,Lisboa Patrícia CristinaORCID,Mota Ariel Penha Carvalho da,Pedrino Gustavo Rodrigues,Armitage James Andrew,Mathias Paulo Cezar de Freitas,Palma-Rigo KesiaORCID,Gomes Rodrigo MelloORCID

Abstract

AbstractThe aim of this study was to evaluate whether high-fat (HF) diet intake during puberty can program obesity as well as generate glucose imbalance and hepatic metabolic dysfunctions in adult life. Male Wistar rats were randomly assigned into two groups: rats fed standard chow (NF) and rats fed a HF from postnatal 30-day-old (PND30) until PND60. Then, both groups were fed a standard chow from PND60 until PND120. Euthanasia and samples collections occurred at PND120. HF animals were overweight (+11%) and had increased adiposity, hyperphagia (+12%), hyperglycaemia (+13%), hyperinsulinemia (+69%), and hypertriglyceridemia (+34%). Plasma glucose levels during intravenous glucose tolerance test (ivGTT) and intraperitoneal insulin tolerance test (ipITT) were also higher in the HF group, whereas Kitt was significantly lower (–34%), suggesting reduced insulin sensitivity. In the same sense, HF animals present pancreatic islets hypertrophy and high β-cell mass. HF animals also had a significant increase in blood glucose levels during pyruvate tolerance test, indicating increased gluconeogenesis. Hepatic morphology analyses showed an increase in lipid inclusion in the HF group. Moreover, PEPCK and FAS protein expression were higher in the livers of the HF animals (+79% and + 37%, respectively). In conclusion, HF during puberty causes obese phenotype leading to glucose dyshomeostasis and nonalcoholic fatty liver disease, which can be related to the overexpression of proteins PEPCK and FAS.

Publisher

Cambridge University Press (CUP)

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3