Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes

Author:

Brunet S,Pahlavan G,Taylor S,Maro B

Abstract

The spindle checkpoint ensures accurate chromosome segregation by delaying anaphase until all chromosomes are correctly aligned on the microtubule spindle. Although this mechanism is conserved throughout eukaryotic evolution, it is unclear whether it operates during meiosis in female mammals. The results of the present study show that in mouse oocytes spindle alterations prevent both chromosome segregation and MPF (M phase promoting factor) inactivation during the first meiotic M phase. Moreover, the spindle checkpoint component budding uninhibited by benzimidazole 1 (BUB1) localizes to kinetochores and is phosphorylated until anaphase of both meiotic M phases. Both localization and phosphorylation are similar to those observed in oocytes at microtubule depolymerization. In addition, the kinetochore localization and phosphorylation of BUB1 do not depend on the MOS/.../MAPK pathway. These data indicate that the spindle checkpoint is probably active during meiotic maturation in mouse oocytes. BUB1 remains associated with kinetochores and is phosphorylated during the metaphase arrest of the second meiotic M phase, indicating that this protein may also play a role in the natural metaphase II arrest in mammalian oocytes.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3