Interface and oxide trap states of SiO2/GaN metal–oxide–semiconductor capacitors and their effects on electrical properties evaluated by deep level transient spectroscopy

Author:

Ogawa Shingo1ORCID,Mizobata Hidetoshi2ORCID,Kobayashi Takuma2ORCID,Shimura Takayoshi2ORCID,Watanabe Heiji2ORCID

Affiliation:

1. Toray Research Center, Inc. 1 , Otsu, Shiga 520-0842, Japan

2. Graduate School of Engineering, Osaka University 2 , Suita, Osaka 565-0871, Japan

Abstract

The relationship between the electrical properties and the carrier trap properties of the SiO2/GaN metal–oxide–semiconductor (MOS) capacitors was investigated using electrical measurements and deep level transient spectroscopy (DLTS). The capacitance–voltage (C–V) measurement showed that the frequency dispersion of the C–V curves became smaller after an 800 °C annealing in O2 ambient. DLTS revealed that before the annealing, the interface trap states, in a broad energy range above the midgap of GaN, were detected with the higher interface state density at around 0.3 and 0.9 eV below the conduction band minimum (EC) of GaN. Moreover, the oxide trap states were formed at around 0.1 eV below the EC of GaN, plausibly indicating a slow electron trap with a tunneling process. Although both trap states affect the electrical reliability and insulating property of the SiO2/GaN MOS capacitors, they were found to drastically decrease after the annealing, leading to the improvement of the electrical properties.

Funder

Program for Creation of Innovative Core Technology for Power Electronics

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3