TimeSOAP: Tracking high-dimensional fluctuations in complex molecular systems via time variations of SOAP spectra

Author:

Caruso Cristina1ORCID,Cardellini Annalisa2ORCID,Crippa Martina1ORCID,Rapetti Daniele1ORCID,Pavan Giovanni M.12ORCID

Affiliation:

1. Department of Applied Science and Technology, Politecnico di Torino 1 , Corso Duca degli Abruzzi 24, 10129 Torino, Italy

2. Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano 2 , Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland

Abstract

Many molecular systems and physical phenomena are controlled by local fluctuations and microscopic dynamical rearrangements of the constitutive interacting units that are often difficult to detect. This is the case, for example, of phase transitions, phase equilibria, nucleation events, and defect propagation, to mention a few. A detailed comprehension of local atomic environments and of their dynamic rearrangements is essential to understand such phenomena and also to draw structure–property relationships useful to unveil how to control complex molecular systems. Considerable progress in the development of advanced structural descriptors [e.g., Smooth Overlap of Atomic Position (SOAP), etc.] has certainly enhanced the representation of atomic-scale simulations data. However, despite such efforts, local dynamic environment rearrangements still remain difficult to elucidate. Here, exploiting the structurally rich description of atomic environments of SOAP and building on the concept of time-dependent local variations, we developed a SOAP-based descriptor, TimeSOAP (τSOAP), which essentially tracks time variations in local SOAP environments surrounding each molecule (i.e., each SOAP center) along ensemble trajectories. We demonstrate how analysis of the time-series τSOAP data and of their time derivatives allows us to detect dynamic domains and track instantaneous changes of local atomic arrangements (i.e., local fluctuations) in a variety of molecular systems. The approach is simple and general, and we expect that it will help shed light on a variety of complex dynamical phenomena.

Funder

HORIZON EUROPE European Research Council

Swiss National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3