Machine learning of microscopic structure-dynamics relationships in complex molecular systems

Author:

Crippa MartinaORCID,Cardellini AnnalisaORCID,Cioni MatteoORCID,Csányi GáborORCID,Pavan Giovanni MORCID

Abstract

Abstract In many complex molecular systems, the macroscopic ensemble’s properties are controlled by microscopic dynamic events (or fluctuations) that are often difficult to detect via pattern-recognition approaches. Discovering the relationships between local structural environments and the dynamical events originating from them would allow unveiling microscopic-level structure-dynamics relationships fundamental to understand the macroscopic behavior of complex systems. Here we show that, by coupling advanced structural (e.g. Smooth Overlap of Atomic Positions, SOAP) with local dynamical descriptors (e.g. Local Environment and Neighbor Shuffling, LENS) in a unique dataset, it is possible to improve both individual SOAP- and LENS-based analyses, obtaining a more complete characterization of the system under study. As representative examples, we use various molecular systems with diverse internal structural dynamics. On the one hand, we demonstrate how the combination of structural and dynamical descriptors facilitates decoupling relevant dynamical fluctuations from noise, overcoming the intrinsic limits of the individual analyses. Furthermore, machine learning approaches also allow extracting from such combined structural/dynamical dataset useful microscopic-level relationships, relating key local dynamical events (e.g. LENS fluctuations) occurring in the systems to the local structural (SOAP) environments they originate from. Given its abstract nature, we believe that such an approach will be useful in revealing hidden microscopic structure-dynamics relationships fundamental to rationalize the behavior of a variety of complex systems, not necessarily limited to the atomistic and molecular scales.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Research Council

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3