Dark current in monolithic extended-SWIR GeSn PIN photodetectors

Author:

Atalla M. R. M.1ORCID,Assali S.1ORCID,Koelling S.1ORCID,Attiaoui A.1,Moutanabbir O.1ORCID

Affiliation:

1. Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville , Montréal, Québec H3C 3A7, Canada

Abstract

Monolithic integration of extended short-wave infrared photodetectors (PDs) on silicon is highly sought-after to implement manufacturable, cost-effective sensing and imaging technologies. With this perspective, GeSn PIN PDs have been the subject of extensive investigations because of their bandgap tunability and silicon compatibility. However, due to growth defects, these PDs suffer a relatively high dark current density as compared to commercial III–V PDs. Herein, we elucidate the mechanisms governing the dark current in 2.6 μm GeSn PDs at a Sn content of 10 at. %. It was found that in the temperature range of 293–363 K and at low bias, the diffusion and Shockley–Read–Hall (SRH) leakage mechanisms dominate the dark current in small diameter (20 μm) devices, while combined SRH and trap assisted tunneling (TAT) leakage mechanisms are prominent in larger diameter (160 μm) devices. However, at high reverse bias, the TAT leakage mechanism becomes dominant regardless of the operating temperature and device size. The effective non-radiative carrier lifetime in these devices was found to reach ∼100–150 ps at low bias. Owing to TAT leakage current, however, this lifetime reduces progressively as the bias increases.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Canada Foundation for Innovation

Mitacs

PRIMA Quebec

Defence Canada

the US Army Research Office

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3