Effects of competitive adsorption on production capacity during CO2 displacement of CH4 in shale

Author:

Deng Jia1ORCID,Zhang Qi2,He Jiujiu1,Zhao Guangjie1,Song Fuquan3ORCID,Song Hongqing4ORCID

Affiliation:

1. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China

2. Northwest Oilfield Company, SINOPEC, Luntai, Xinjiang 841600, China

3. School of Petrochemical & Energy Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China

4. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

During CO2 displacement of CH4 in shale, competitive adsorption results in reduced pore space used for gas flow in shale, which is closely associated with the production capacity of shale-gas reservoirs. Thus, the present work investigates the effects of CO2–CH4 competitive adsorption on production capacity. Herein, a slit–pore model is developed in terms of gas storage (CO2 and CH4) and graphene pores using molecular dynamics and implemented via large-scale atomic/molecular massively parallel simulator. The effects of CO2 injection pressure, temperature, and velocity and of pore size on CO2–CH4 displacement and competitive adsorption properties are simulated and examined. Hence, the displacement efficiency of CH4 and the adsorption layer thickness of the CO2–CH4 binary mixture are determined. Moreover, based on a basic seepage model of planar linear flooding, the effect of CO2–CH4 competitive adsorption on production capacity is analytically investigated. Results demonstrate that the production capacity with consideration of adsorption layer thickness is less than that without consideration of adsorption layer thickness, illustrating that CO2–CH4 competitive adsorption behaviors are closely connected with permeability, flow rate, and production capacity of shale-gas reservoirs, especially for shale-gas reservoirs containing large numbers of pores and slits.

Funder

National Natural Science Foundation of China

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3