Study on Competitive Adsorption and Displacing Properties of CO2 Enhanced Shale Gas Recovery: Advances and Challenges

Author:

Liu Shuyang12ORCID,Sun Baojiang12ORCID,Xu Jianchun12,Li Hangyu12,Wang Xiaopu12

Affiliation:

1. Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

CO2 enhanced shale gas recovery (CO2-ESGR) draws worldwide attentions in recent years with having significant environmental benefit of CO2 geological storage and economic benefit of shale gas production. This paper is aimed at reviewing the state of experiment and model studies on gas adsorption, competitive adsorption of CO2/CH4, and displacement of CO2-CH4 in shale in the process of CO2-ESGR and pointing out the related challenges and opportunities. Gas adsorption mechanism in shale, influencing factors (organic matter content, kerogen type, thermal maturity, inorganic compositions, moisture, and micro/nano-scale pore), and adsorption models are described in this work. The competitive adsorption mechanisms are qualitatively ascertained by analysis of unique molecular and supercritical properties of CO2 and the interaction of CO2 with shale matrix. Shale matrix shows a stronger affinity with CO2, and thus, adsorption capacity of CO2 is larger than that of CH4 even with the coexistence of CO2-CH4 mixture. Displacement experiments of CO2-CH4 in shale proved that shale gas recovery is enhanced by the competitive adsorption of CO2 to CH4. Although the competitive adsorption mechanism is preliminary revealed, some challenges still exist. Competitive adsorption behavior is not fully understood in the coexistence of CO2 and CH4 components, and more experiment and model studies on adsorption of CO2-CH4 mixtures need to be conducted under field conditions. Coupling of competitive adsorption with displacing flow is key factor for CO2-ESGR but not comprehensively studied. More displacement experiments of CO2-CH4 in shale are required for revealing the mechanism of flow and transport of gas in CO2-ESGR.

Funder

Program for Changjiang Scholars and Innovative Research Team in University of Ministry of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference132 articles.

1. WMO greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2018;WMO

2. Climatic role of terrestrial ecosystem under elevated CO2 : a bottom-up greenhouse gases budget

3. ConinckH.LoosM.MetzB.DavidsonO.MeyerL.IPCC special report on CO2 capture and storage2005MontrealIPCC

4. Impact of gas impurities on CO 2 mole fraction: Application in carbon capture and storage (CCS) processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3