On the transport behavior of shale gas in nanochannels with fractal roughness

Author:

Lou Liqun,Chen PeijianORCID,Peng Juan,Zhu JiamingORCID,Liu GuannanORCID

Abstract

As an efficient and environmentally friendly source of energy, shale gas is abundantly available and continues to contribute to the economy growth because of its huge potential for production. However, accurately predicting the transport behavior of shale gas is still challenging due to the small scale and complexity of nanochannels, which impedes the efficiency of recovery. In this paper, the transport behavior of shale gas in nanochannels with fractal roughness is studied by molecular dynamics simulation and theoretical analysis. It is found that the present work functions well to predict the transport behavior of shale gas in nanochannels with roughness. The introduction of fractal roughness hinders the transport of shale gas and leads to a complex trajectory of methane molecules in nanochannels. Furthermore, it is interesting to find the average gas viscosity increases, while the gas flux decreases with the increase in the inclined angle due to the impediment effect after the deflection. These results are helpful for understanding the migration of shale gas in nanochannels with roughness and guiding the improvement of shale gas recovery in practical applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

The Opening Project of State Key Laboratory of Solid Lubricatio

The Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structure

Key research and development program of Xuzhou

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3