Resistivity size effect in epitaxial VNi2 layers

Author:

Zhang Minghua1ORCID,Gall Daniel1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, USA

Abstract

Epitaxial VNi2 layers are deposited onto MgO(001) and their resistivity ρ measured as a function of layer thickness d = 10.5–138 nm to quantify the resistivity size effect. The layers exhibit resistivity minima at both stoichiometric V:Ni = 1:2 composition and 700 °C growth temperature, which is attributed to electron scattering at V–Ni antisite defects and is described using the ordering parameter within the framework by Rossiter. A cube-on-cube epitaxy of the fcc parent structure on MgO(001) leads to two possible layer orientations for orthorhombic VNi2(010) and VNi2(103), resulting in considerable atomic disorder at domain boundaries, consistent with relatively small x-ray coherence lengths of 8 and 14 nm in-plane and along the growth direction of a 33.5 nm thick layer. In situ ρ vs d measurements yield a bulk resistivity of ρo = 46 ± 2 μ Ω cm and a benchmark quantity of ρoλ = (138 ± 5) × 10−16 Ω m2, where λ is the bulk electron mean free path. Air exposure causes a minor resistivity increase due to 2 ± 1 nm thick surface oxide that perturbs the surface potential. Resistivities at 77 K are Δρ = 16 ± 3 μ Ω cm below those at room temperature. This Δρ is thickness independent and is close to the previously predicted 13.9 μ Ω cm bulk resistivity for VNi2 along [100]. However, the measured bulk resistivity is well above this prediction, which is attributed to electron scattering at domain boundaries/atomic disorder. Consequently, the theoretically predicted superior directional conduction cannot be experimentally confirmed in this study. The overall results indicate that VNi2 is only a promising compound for narrow interconnects if a synthesis scheme can be developed that results in a strong atomic order, a negligible domain boundary density, and a [100] crystalline orientation along the transport direction.

Funder

Semiconductor Research Corporation

Empire State Development's Division of Science, Technology and Innovation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3