Native point defects in 2D transition metal dichalcogenides: A perspective bridging intrinsic physical properties and device applications

Author:

Ko Kyungmin1ORCID,Jang Mingyu2ORCID,Kwon Jaeeun2ORCID,Suh Joonki12ORCID

Affiliation:

1. Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology 1 , Ulsan 44919, Republic of Korea

2. Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology 2 , Ulsan 44919, Republic of Korea

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) hold immense promise as ultrathin-body semiconductors for cutting-edge electronics and optoelectronics. In particular, their sustained charge mobility even at atomic-level thickness as well as their absence of surface dangling bonds, versatile band structures, and silicon-compatibility integration make them a prime candidate for device applications in both academic and industrial domains. Despite such high expectations, group-VI TMDs reportedly exhibit a range of enigmatic properties, such as substantial contact resistance, Fermi level pinning, and limited unipolar charge transport, which are all rooted in their inherent defects. In other words, intrinsic physical properties resulting from their native defects extend their influence beyond the material level. Bridging point-defect-induced material properties and their behavior at the device level, this Perspective sheds light on the significance of crystalline defects beyond a rather simple defect–property relationship. As a distinctive approach, we briefly review the well-established defect model of conventional III–V semiconductors and further apply it to the emergent defect behaviors of 2D TMDs such as their defect-induced gap states. Within the main discussion, we survey a range of behaviors caused by the most prevalent intrinsic defect, namely, vacancies, within 2D TMDs, and their implications for electronic and optoelectronic properties when employed at the device level. This review presents an in-depth summary of complexities in material properties as well as device characteristics arising from intrinsic point defects and provides a solid foundation for the cross-links among native defects and material/device properties.

Funder

National Research Foundation of Korea

Ulsan National Institute of Science and Technology

Air Force Office of Scientific Research

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3