The Defects Genome of Janus Transition Metal Dichalcogenides

Author:

Sayyad Mohammed1,Kopaczek Jan2,Gilardoni Carmem M.3,Chen Weiru4,Xiong Yihuang4,Yang Shize5,Watanabe Kenji6,Taniguchi Takashi7,Kudrawiec Robert2,Hautier Geoffroy4,Atatüre Mete3,Tongay Seth Ariel1ORCID

Affiliation:

1. Materials Science and Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe Arizona AZ 85287 USA

2. Department of Semiconductor Materials Engineering Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27 Wroclaw 50‐370 Poland

3. Cavendish Laboratory University of Cambridge J.J. Thomson Avenue Cambridge CB3 0HE UK

4. Thayer School of Engineering Dartmouth College Hanover NH 03755 USA

5. Aberration Corrected Electron Microscopy Core Yale University New Haven CT 06516 USA

6. Research Center for Functional Materials National Institute for Materials Science Tsukuba 305‐0044 Japan

7. International Center for Materials Nanoarchitectonics National Institute for Materials Science Tsukuba 305‐0044 Japan

Abstract

Abstract2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two‐faced structure, broken‐mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high‐quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain‐boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high‐resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS and VSe) and double chalcogen vacancy (VSVSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h‐BN‐encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Narodowe Centrum Nauki

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3