Assessment of channel temperature in β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors using visible wavelength thermoreflectance thermal imaging

Author:

Lundh James Spencer1ORCID,Pavlidis Georges2ORCID,Sasaki Kohei3ORCID,Centrone Andrea4ORCID,Spencer Joseph A.56ORCID,Masten Hannah N.1ORCID,Currie Marc6ORCID,Jacobs Alan G.6ORCID,Konishi Keita3ORCID,Kuramata Akito3ORCID,Hobart Karl D.6ORCID,Anderson Travis J.6ORCID,Tadjer Marko J.6ORCID

Affiliation:

1. National Research Council Postdoctoral Fellow, residing at U.S. Naval Research Laboratory 1 , Washington, District of Columbia 20375, USA

2. School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut 2 , Storrs, Connecticut 06269, USA

3. Novel Crystal Technology, Inc 3 ., 2-3-1, Hirosedai, Sayama, Saitama 350-1328, Japan

4. National Institute for Standards and Technology 4 , 100 Bureau Dr, Gaithersburg, Maryland 20899, USA

5. Center for Power Electronics Systems, Virginia Tech 5 , Blacksburg, Virginia 24060, USA

6. U.S. Naval Research Laboratory 6 , 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA

Abstract

This work demonstrates direct, rapid 2D thermal mapping measurement capabilities of the ultrawide bandgap semiconductor channel of lateral β-(AlxGa1−x)2O3/Ga2O3 transistors without sample contamination, long acquisition times, or sophisticated thermometry such as developing deep-ultra-violet compatible thermoreflectance systems. The temperature rise in the channel of a β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistor (HFET) was mapped using thermoreflectance imaging at 470 nm. First, the thermoreflectance response of the HFET channel was measured using a monochromator, revealing a maximum of the reflectance change around 470–480 nm. Thermoreflectance calibrations were then performed at 470 nm (peak of the reflectance change) and yielded an average thermoreflectance coefficient of 1.06 ± 0.07 × 10−4 K−1. Subsequent measurements of the device (power densities of 0.15–1.47 W/mm and gate-source voltage of 0 V) enabled extraction of a device-level thermal resistance of 51.1 mm·K/W in the channel at the drain-side of the gate. High-resolution, in situ scanning thermal microscopy measurements of the channel temperature rise show good agreement with and further support the thermoreflectance measurements. Finally, the thermal profile across the entire device length (metal electrodes and semiconductor channel) and width was simultaneously measured using thermoreflectance imaging at 470 nm, and the peak temperature rise was measured in the channel at the drain-side of the gate electrode.

Funder

National Research Council

Office of Naval Research

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3