Affiliation:
1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract
Magnetic soft robots are promising for diverse applications, since they can achieve multimodal locomotion through programming magnetization. However, reprogrammable magnetization of soft robots remains a challenge. Here, we prepare a magnetic elastomer containing both Fe3O4 and CrO2 particles, where Fe3O4 nanoparticles can be heated through the magnetothermal effect. Once the temperature exceeds the Curie point of CrO2 particles, the original magnetization profiles of the elastomer can be erased and re-written. We tune the magnetization profile of a one-dimensional magnetic strip to realize three shape transformation modes, and the reprogrammed magnetization profiles are validated experimentally. The magnetothermal heating process is simulated. We also demonstrate reprogrammable shape transformation of two-dimensional magnetic soft structures. Finally, a reprogrammable hand-shaped soft robot is designed and used as a magnetic switch in a LED circuit.
Funder
National Natural Science Foundation of China
Key Research and Development Projects of Shaanxi Province
Subject
Physics and Astronomy (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献