Deformation mechanism of the dual thermo-sensitive hydrogel bilayer structure

Author:

Jiang Huilong,Lei Jincheng,Liu ZishunORCID

Abstract

Abstract Thermo-sensitive hydrogel is a smart soft material that undergoes significant volume deformation in response to temperature changes, making it highly applicable in soft smart actuators. However, traditional thermo-sensitive hydrogel bilayer structures are often characterized by slow response rates and limited unidirectional bending capabilities. To overcome these limitations, a new thermo-sensitive hydrogel bilayer structure with faster response and bidirectional deformation is proposed in this work. This structure consists of two active thermo-sensitive hydrogel layers with different thermo-sensitive effect, in which one shrinks and the other swells when the temperature changes. The hydrogels with the fastest temperature response are identified by optimizing the monomer fraction and used to create the bilayer structure. The deformation states of the dual thermo-sensitive hydrogel bilayer structure are controlled by regulating the phase state of the both layers, resulting in different deformation patterns under varied temperature in experiments. We have established a model to describe the deformation of the bilayer structure. Finally, the capability of the bilayer structure to mimic human body movements and the blooming and wilting of flowers is demonstrated. This work reveals the deformation mechanism for a novel dual thermo-sensitive hydrogel bilayer structure, which holds great significance for the advancement of soft smart actuators.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3