Regulating ferroelectricity in Hf0.5Zr0.5O2 thin films: Exploring the combined impact of oxygen vacancy and electrode stresses

Author:

Bai Mingkai12ORCID,Hong Peizhen3ORCID,Han Runhao12ORCID,Chai Junshuai12ORCID,Zhang Bao1ORCID,Hou Jingwen1ORCID,Xiong Wenjuan1,Yang Shuai1,Gao Jianfeng1,Luo Feng3ORCID,Huo Zongliang124ORCID

Affiliation:

1. Institute of Microelectronics, Chinese Academy of Sciences 1 , Beijing 100029, China

2. College of Microelectronics, University of Chinese Academy of Sciences 2 , Beijing 100049, China

3. College of Electronic Information and Optical Engineering, Nankai University 3 , Tianjin 300071, China

4. Yangtze Memory Technologies Company Ltd. 4 , Wuhan, China

Abstract

Hf0.5Zr0.5O2 (HZO) is a promising candidate for low-power non-volatile memory due to its nanoscale ferroelectricity and compatibility with silicon-based technologies. Stress and oxygen vacancy (VO) are key factors that impact the ferroelectricity of HZO. However, their combined effects have not been extensively studied. In this study, we investigated the impact of the VO content on HZO thin films’ ferroelectricity under different electrode stresses by using TiN and tungsten (W) top electrodes and controlling ozone dose time during HZO deposition. The HZO thin films with W top electrodes exhibit elevated stress levels and a greater abundance of orthorhombic/tetragonal phases, and the HZO thin films with TiN top electrode shows an increase in the monoclinic phase with increasing ozone dose time. The residual polarization (Pr) of the capacitors with TiN and W top electrodes displayed different or even opposing trends with increasing ozone dose time, and the VO content decreases with increasing ozone dose time for both sets of capacitor samples. We propose a model to explain these observations, considering the combined influence of electrode stresses and VO on the free and formation energy of the crystalline phase. Increasing the VO content promotes the transformation of the tetragonal phase to the orthorhombic phase in HZO films with TiN top electrodes, and with W top electrodes, a higher VO content prevents the tetragonal phase from transforming into the orthorhombic/monoclinic phase. Additionally, an alternative explanation is proposed solely from the perspective of stress. These findings provide valuable insights into the regulation of ferroelectricity in HZO thin films.

Funder

Youth Innovation Promotion Association

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3