Affiliation:
1. Institute of Microelectronics of the Chinese Academy of Sciences 1 , Beijing 100029, China
2. University of Chinese Academy of Sciences 2 , Beijing 100049, China
3. Yangtze Advanced Memory Industry Innovation Centre Limited Liability Company 3 , Wuhan 430070, China
Abstract
To meet commercialization requirements, the distributions of materials in hafnium-based ferroelectric devices—including their phase and orientation—need to be controlled. This article presents a method for improving the ferroelectric phase ratio and orientation by adjusting the stress distribution of the annealing structure in a three-dimensional capacitor. In such a structure, stress can be applied in three directions: tangential, axial, and radial; there are, thus, more ways to regulate stress in three-dimensional structures than in two-dimensional structures. This work sought to clarify the role of the stress direction on the proportions and orientations of ferroelectric phases. The results of stress simulations show that a structure with an internal TiN electrode, but no filling provides greater axial and tangential stresses in the hafnium-oxide layer. In comparison with the case of the hole being filled with tungsten, the proportion of the O phase is increased by approximately 20%, and in experiments, the projection of the polarization direction onto the normal was found to be increased by 5%. Axial and tangential stresses are regarded to be beneficial for the formation of the O phase and for improving the orientation of the polarization direction. This work provides a theoretical basis and guidance for the three-dimensional integration of hafnium-based ferroelectric materials.
Funder
National Key Research and Development Program of China