Application and comparison of dynamic mode decomposition methods in the tip leakage cavitation of a hydrofoil case

Author:

Wu YanzhaoORCID,Tao RanORCID,Yao ZhifengORCID,Xiao RuofuORCID,Wang FujunORCID

Abstract

The cavitation of the tip leakage vortex (TLV) induced by tip leakage has always been a difficult problem faced by turbomachinery, and its flow structure is complex and diverse. How to accurately extract the main structures that affect the cavitating flow of the TLV from the two-phase flow field is a key problem. In this study, the main mode extraction and low order mode reconstruction accuracy of the cavitation flow field of TLV downstream of National Advisory Committee for Aeronautics (NACA)0009 hydrofoil by two dynamic mode decomposition (DMD) methods are compared. The research shows that the main modes extracted by the standard DMD method contain a large number of noise modes, while the sparsity-promoting DMD eliminates the noise modes, showing obvious advantages in the reconstruction accuracy of the velocity field. The characteristics of cavitation signals are analyzed, and the cavitation signals are divided into four categories, which explains the reason why DMD methods have low reconstruction accuracy in cavitation. This study provides a theoretical basis and strong guarantee for the extraction of mode decomposition characteristics of the two-phase flow field. This is of great significance for accelerating the prediction of multiphase flow fields based on intelligent flow pattern learning in the future. Meanwhile, it also provides a new method and road for the introduction of artificial intelligence technology in future scientific research.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3