Reduced Order Data-Driven Analysis of Cavitating Flow over Hydrofoil with Machine Learning

Author:

Guang Weilong1,Wang Peng2,Zhang Jinshuai2,Yuan Linjuan1ORCID,Wang Yue3ORCID,Feng Guang2,Tao Ran1

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China

3. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Abstract

Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity has posed great challenges. To address these challenges, this study presents a novel reduced order modeling (ROM) method to accurately analyze and predict cavitation flow fields under different conditions. The proposed ROM decomposes the flow field into linearized low-order modes while maintaining its accuracy and effectively reducing its dimensionality. Specifically, this study focuses on predicting cavitation on the Clark-Y hydrofoil using a combination of numerical simulation, proper orthogonal decomposition (POD), and neural networks. By analyzing different cavitation conditions, the results revealed that the POD method effectively reduces the order of the cavity flow field while achieving excellent flow field reconstruction. Notably, the zeroth- and first-order modes are associated with attachment cavitation, while the second-, third- and fourth-order modes correspond to cavitation shedding. Additionally, the fifth- and sixth-order modes along the hydrofoil surface are associated with the backward jet flow. To predict the conditions of high-energy modes, the neural network proved to be more effective, exhibiting excellent performance in stable attached cavitation. However, for cloud cavitation, the accuracy of the neural network model requires further improvement. This study not only introduces a novel approach for predicting cavitation flow fields but also highlights new challenges that will require continuous attention in future research endeavors.

Funder

State Grid Corporation of China Headquarters Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3