Edge turbulence measurements in L-mode and I-mode at ASDEX Upgrade

Author:

Bielajew R.1ORCID,Conway G. D.2,Griener M.2ORCID,Happel T.2ORCID,Höfler K.23ORCID,Howard N. T.1ORCID,Hubbard A. E.1,McCarthy W.1ORCID,Molina Cabrera P. A.2ORCID,Nishizawa T.2ORCID,Rodriguez-Fernandez P.1ORCID,Silvagni D.2ORCID,Vanovac B.2ORCID,Wendler D.23ORCID,Yoo C.1,White A. E.1,

Affiliation:

1. MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA

2. Max Planck Institute for Plasma Physics, 85748 Garching, Germany

3. Physics Department E28, Technical University of Munich, 85748 Garching, Germany

Abstract

The I-mode confinement regime is promising for future reactor operation due to high energy confinement without high particle confinement. However, the role of edge turbulence in creating I-mode's beneficial transport properties is still unknown. New measurements of edge turbulence ([Formula: see text]) in L-modes and I-modes at low and high densities at ASDEX Upgrade are presented in this paper. A high radial resolution correlation electron cyclotron emission radiometer measures the broadband turbulence throughout the L-mode and I-mode edge and pedestal. The weakly coherent mode (WCM) is measured in both L-mode and I-mode near the last closed flux surface with Te fluctuation levels of 2.3%–4.2%, with a frequency shift between the two phases related to a deeper Er well in I-mode. An [Formula: see text] phase diagnostic captures a change of the WCM [Formula: see text] phase between L-mode and I-mode from [Formula: see text] to [Formula: see text]. The thermal He beam diagnostic measures a WCM wavenumber range of −0.5 to −1.0 cm−1. A low-frequency edge oscillation (LFEO) appears in the I-mode phase of these discharges and displays coupling to the WCM, but the LFEO does not appear in the L-mode phase. Linear gyrokinetic simulations of the outer core and pedestal top turbulence indicate that while the dominant turbulent modes in the outer core are ion directed and electrostatic, the turbulence becomes increasingly electron directed and electromagnetic with increasing radius. Collisionality is not found to impact characteristics of the L-mode and I-mode edge turbulence with respect to the presence of the WCM; however, the quality of global confinement decreases with collisionality.

Funder

Euratom Research and Training Programme

U.S. Department of Energy

National Science Foundation Graduate Research Fellowship Progra

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3