Characteristics of edge temperature ring oscillation during the stationary improved confinement mode in EAST

Author:

Liu A.D.ORCID,Zou X.L.,Zhong X.M.ORCID,Song Y.T.,Han M.K.ORCID,Duan Y.M.,Liu H.Q.ORCID,Wang T.B.,Li E.Z.ORCID,Zhang L.,Feng X.,Zhuang G.,

Abstract

Abstract The I-mode is a natural edge localized mode (ELM)-free regime with H-mode-like improved energy confinement and L-mode-like particle confinement, making it an attractive scenario for future tokamak-based fusion reactors. A kind of low-frequency oscillation has been widely observed, with a frequency between stationary zonal flow and geodesic-acoustic mode (GAM) zonal flow. In EAST, most stationary I-mode shots have such a mode, called edge temperature ring oscillation (ETRO). This mode probably plays an important role in development and maintenance of the I-mode , while investigations are needed to clarify the differences between ETRO and similar mode low-frequency oscillation in other devices, such as limit cycle oscillation (LCO). In this paper, the properties of ETRO are described in detail, including the structure of its magnetic components, its radial propagation characteristics, statistics of its central frequency, a linear analysis of the alternating transition turbulences and a comparison with GAM and LCO. Although some similarities can be found between ETRO and both GAM and LCO, the main features are not identical. ETRO is probably a novel type of finite frequency zonal flow or pressure gradient-induced drift that is unique to the I-mode. It is found that modest fueling can reduce ETRO intensity while maintaining I-mode confinement, suggesting that supersonic molecular beam injection could be used as an effective tool to control ETRO.

Funder

National MCF Energy R&D Program

Fundamental Research Funds for the Central Universities

Natural Science Foundation of China

Collaborative Innovation Program of Hefei Science Center CAS

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3