Neural network identification of the weakly coherent mode in I-mode discharge on EAST

Author:

Yang K.N.ORCID,Liu Z.X.,Liu J.ORCID,Long F.F.ORCID,Xia T.Y.,Gao X.ORCID,Liu Y.J.ORCID,Li J.Y.,Li P.C.,Deng C.C.,Yin X.Y.,Li H.,Xie J.L.,Lan T.ORCID,Mao W.Z.ORCID,Liu A.D.ORCID,Zhou C.,Ding W.X.,Zhuang G.,Liu W.D.,

Abstract

Abstract The improved energy confinement mode (I-mode) is widely considered as an important operation regime for ITER. I-mode implementation depends on the specified basic plasma parameters and certain operation conditions, which are discovered by statistical plasma characteristics from a large number of I-mode discharges on a tokamak. The extraction process of I-mode plasma characteristics is complicated, time-consuming, and limited to the sampling rate of the measured signals. Experimental observation of the I-mode is accompanied by the appearance of a weakly coherent mode (WCM). However, it takes much time to accurately scan and quantify WCM characteristics when analyzing many I-mode discharges. Recently, a neural network identification method was developed as an I-mode detector to traverse a whole database as a replacement for manual identification. Two fully connected neural network models were trained with the spectrum of propagation velocity of density perturbation from Doppler backward scattering and the electron density measured by a polarimeter-interferometer system with the experimental advanced superconducting tokamak I-mode database. An accuracy of 98.30% in identifying WCMs in I-mode discharges is achieved with the WCM classification model. In addition, the regime classification model was also utilized to successfully distinguish between the low confinement mode (L-mode), I-mode, and high confinement mode (H-mode) with 96.03% accuracy. Finally, ablation experiments were performed on the regime classifiers, showing that there is potential for further performance improvement with future use of RNN model.

Funder

National Magnetic Confinement Fusion Program of China

Collaborative Innovation Program of Hefei Science Center, CAS

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3