Mechanisms for undesired nucleation on H-terminated Si and dimethylamino-trimethylsilane passivated SiO2 during TiO2 area-selective atomic layer deposition

Author:

Nye Rachel A.123ORCID,Song Seung Keun1ORCID,Van Dongen Kaat23ORCID,Delabie Annelies23ORCID,Parsons Gregory N.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA

2. Department of Chemistry, University of Leuven, Leuven B-3001, Belgium

3. IMEC, Leuven B-3001, Belgium

Abstract

During TiO2 atomic layer deposition (ALD) using TiCl4 and H2O at ∼150 °C, nucleation proceeds rapidly on hydroxylated SiO2 but is inherently delayed on passivated surfaces such as H-terminated silicon (Si-H) and trimethylsilyl-passivated SiO2 (SiO2-TMS) formed using dimethylamino-trimethylsilane (DMA-TMS) as a small molecule inhibitor. In this work, we explore details of TiO2 nucleation on both Si-H and SiO2-TMS and show that the mechanisms leading to unwanted nuclei depend strongly on the passivation mechanism. Initial growth is observed as a function of ALD cycles using scanning electron microscopy to obtain average particle size, density, and overall surface coverage fraction. Also, average film thickness vs cycle is estimated using ellipsometry or Rutherford backscattering spectrometry. Data are compared to an analytical model that considers that either nucleation sites are present on the starting non-growth surface or sites are generated during the ALD process. On the Si-H surface, data and modeling indicate that nucleation occurs predominantly from a fixed number of nucleation sites present on the starting growth surface that start to immediately grow. However, on TMS-passivated SiO2, nucleation sites are predominantly generated during the growth process so that the density of nucleation sites increases as growth proceeds. Results indicate that nucleation sites are created when adsorbed ALD reactants become kinetically trapped on the SiO2-TMS surface. This demonstrates that mechanisms associated with unwanted nucleation during area-selective deposition (ASD) can depend on details of the surface passivation scheme, thereby providing insight to help to improve ASD strategies for advanced applications.

Funder

Electronic Component Systems for European Joint Undertaking

National Science Foundation

Semiconductor Research Corporation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3