Properties of V-defect injectors in long wavelength GaN LEDs studied by near-field electro- and photoluminescence

Author:

Yapparov Rinat1ORCID,Tak Tanay2ORCID,Ewing Jacob2ORCID,Nakamura Shuji2ORCID,DenBaars Steven P.2ORCID,Speck James S.2ORCID,Marcinkevičius Saulius1ORCID

Affiliation:

1. Department of Applied Physics, KTH Royal Institute of Technology, AlbaNova University Center 1 , 10691 Stockholm, Sweden

2. Materials Department, University of California 2 , Santa Barbara, California 93106, USA

Abstract

The efficiency of multiple quantum well (QW) light emitting diodes (LEDs) to a large degree depends on uniformity of hole distribution between the QWs. Typically, transport between the QWs takes place via carrier capture into and thermionic emission out of the QWs. In InGaN/GaN QWs, the thermionic hole transport is hindered by the high quantum confinement and polarization barriers. To overcome this drawback, hole injection through semipolar QWs located at sidewalls of V-defects had been proposed. However, in the case of the V-defect injection, strong lateral emission variations take place. In this work, we explore the nature of these variations and the impact of the V-defects on the emission spectra and carrier dynamics. The study was performed by mapping electroluminescence (EL) and photoluminescence (PL) with a scanning near-field optical microscope in LEDs that contain a deeper well that can only be populated by holes through the V-defects. Applying different excitation schemes (electrical injection and optical excitation in the far- and near-field), we have shown that the EL intensity variations are caused by the lateral nonuniformity of the hole injection. We have also found that, in biased structures, the PL intensity and decay time in the V-defect regions are only moderately lower that in the V-defect-free regions thus showing no evidence of an efficient Shockley-–Read–Hall recombination. In the V-defect regions, the emission spectra experience a red shift and increased broadening, which suggests an increase of the In content and well width in the polar QWs close to the V-defects.

Funder

Energimyndigheten

Vetenskapsrådet

Solid State Lighting and Energy Electronics Center, University of California Santa Barbara

Office of Energy Efficiency

National Science Foundation

Simons Foundation

Sandia National Laboratories

Department of Defense Education Activity

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3