Controlling excitons in the quantum tunneling regime in a hybrid plasmonic/2D semiconductor interface

Author:

Ferrera M.1ORCID,Rahaman M.2ORCID,Sanders S.3ORCID,Pan Y.2ORCID,Milekhin I.2ORCID,Gemming S.2ORCID,Alabastri A.3ORCID,Bisio F.4ORCID,Canepa M.1ORCID,Zahn D. R. T.2ORCID

Affiliation:

1. OptMatLab, Department of Physics, University of Genoa, I-16146 Genoa, Italy

2. Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany

3. Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA

4. CNR-SPIN, I-16152 Genoa, Italy

Abstract

The electromagnetic field confinement and amplification typical of nano-sized metallic objects supporting localized surface plasmon resonances, i.e., light-induced collective electronic oscillations, can significantly strengthen the interaction of light with atomically thin transition metal dichalcogenides. In view of the realization of plasmon-enhanced devices, it is crucial to investigate the effects induced by light confinement within metallic nanostructures on the excitonic properties of these materials at the nanoscale. Here, we exploit tip-enhanced photoluminescence spectroscopy to locally control the excitons of monolayer molybdenum disulfide (MoS2) coupled with gold nanotriangles in the quantum tunneling regime. The spatial resolution of 10 nm in the tip-enhanced photoluminescence measurements made it possible to image the light-emission related properties of monolayer MoS2 across one single metallic nanostructure and to investigate the effect of the plasmonic enhancement on its photoluminescence peak. Moreover, by taking advantage of the degree of freedom given by the tuning of the tip-sample distance; it was possible to probe the effect of the plasmonic pico-cavity size on the photoluminescence quenching rate of monolayer MoS2.

Funder

Deutscher Akademischer Austauschdienst

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3