Affiliation:
1. Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA
2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract
AbstractThe research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
175 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献