Life cycle integrated flow simulation for hydraulic fracturing horizontal wells in shale gas reservoirs

Author:

Sheng Guanglong,Deng HaiyangORCID,Zhao HuiORCID,Rui Zhenhua,Hu TingORCID,Liu Jinghua,Lu Mingjing

Abstract

The distribution of matrix pressure and water saturation during the fracturing and shut-in period significantly impacts shale gas production. However, traditional numerical simulations primarily focus on the production period, often overlooking the impact of fracturing and shut-in on the seepage field and production rates. This study uses the dual-porosity/dual-permeability-embedded discrete fracture model (DPDK-EDFM) to characterize matrix mixed wettability and the natural/hydraulic fracture geometry. A multiscale numerical simulation model is constructed to encompass the whole life cycle of shale fracturing, shut-in, and production. The model provides a comprehensive understanding for considering the changes in rock properties and the diverse migration mechanisms. Subsequently, the life cycle model is used for sensitivity analysis on capillary pressure, shut-in time, and fracturing fluid volume. The findings demonstrate that (1) capillary pressure strongly impacts flowback rate. As surface tension increases from 0 to 72 mN/m, the flowback rate decreases from 113.00% to 68.25%. (2) The shut-in time strongly affects the uniformity of pressure distribution. (3) The fracturing fluid volume is directly proportional to the rise in formation pressure. This innovative model provides a robust framework for simulating and analyzing the seepage field behavior of shale gas reservoirs throughout the life cycle. Furthermore, through a comprehensive investigation of the main controlling factors, this study provides valuable insights into the efficient development of shale gas reservoirs, carrying both theoretical and practical significance.

Funder

Guanglong Sheng

Hui Zhao

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3