Machine learning method for shale gas adsorption capacity prediction and key influencing factors evaluation

Author:

Zhou YuORCID,Hui Bo,Shi JinwenORCID,Shi Huaqiang,Jing DengweiORCID

Abstract

Shale gas plays a pivotal role in the global energy landscape, emphasizing the need for accurate shale gas-in-place (GIP) prediction to facilitate effective production planning. Adsorbed gas in shale, the primary form of gas storage under reservoir conditions, is a critical aspect of this prediction. In this study, a machine learning Gaussian process regression (GPR) model for methane adsorption prediction was established and validated using published experimental data. Five typical variables, i.e., total organic carbon (TOC), clay minerals, temperature, pressure, and moisture were considered, which were derived from the Marine shale of the Longmaxi formation in the Sichuan Basin through correlation analysis. The performance of the GPR model was compared with the widely used an extreme gradient boosting model. It turned out that our GPR model had better accuracy for predicting methane adsorption in shale with an average relative error of less than 3%. Furthermore, a variance-based sensitivity analysis method in conjunction with kernel density estimation theory was employed to conduct a global sensitivity analysis, quantifying the nonlinear influence of each variable methane adsorption. The findings indicate that TOC is the most significant factor affecting methane adsorption, while clay minerals have a limited direct impact but can enhance their influence through interactions with other influencing factors. Finally, based on the GPR model, a GIP prediction method was proposed that eliminates the need for calculating the density of the adsorbed phase. These findings are expected to extend the shale gas reserve assessment methodologies and offer valuable insight for further exploring the adsorption mechanisms of shale gas.

Funder

National Natural Science Foundation of China

the Zhuhai Innovation and Entrepreneurship team project

The Innovative Talent Promotion Plan of Shaanxi Province-Scientific and Technological Innovation Team

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3