Design and characterization of innovative optical prism for four-degree-of-freedom fast steering mirror active laser compensation system

Author:

Liu Chien-Sheng12ORCID,Tsai Chih-Hao1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan

2. Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan

Abstract

In this study, an innovative four-degree-of-freedom (4-DOF) compensation prism is designed for fast steering mirror active laser compensation systems. In addition to improving the disadvantages of the commercially available compensation systems, such as a larger number of components and longer optical paths, the proposed system has further enhanced the shortcoming of high sensitivity to the laser by using double Porro prisms as 4-DOF compensation prisms proposed in a previous study. The prism proposed in this study reduces the sensitivity to the laser while maintaining two translations and two rotations in 4-DOF control characteristic for laser, thereby improving the resolution of the system to control the laser. First, Zemax was used to build the overall system and evaluate the system characteristics. Then, the skew-ray tracing method and homogeneous coordinate transformation matrix were used to build the mathematical model of the compensation prism and analyze the sensitivity of the proposed prism to the laser. Finally, the closed-loop algorithm was established and the system was completely built on the optical table for experiments to compare the results between the laser before and after compensation by the proposed prism. In addition, the resolution of the proposed prism is compared with the double Porro prisms.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3