A hybrid plasma model for Cr thin film deposition by deep oscillation magnetron sputtering

Author:

Gao J. Y.1ORCID,Ferreira F.2ORCID,Lei M. K.1ORCID

Affiliation:

1. Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology 1 , Dalian 116024, China

2. Centre for Mechanical Engineering Materials and Processes, Department of Mechanical Engineering, University of Coimbra 2 , Rua Luís Reis Santos, Coimbra 3030-788, Portugal

Abstract

A time-dependent hybrid plasma model composed of a zero-dimensional global model and a two-dimensional fluid model is proposed for simulation of plasma chemistry and transportation of plasma during Cr thin film deposition by deep oscillation magnetron sputtering (DOMS). The global model deals with plasma reactions in the ionization region near the target with discharge voltage and current waveforms as inputs. The temporal plasma characteristics calculated by the global model are utilized as a boundary condition for the two-dimensional fluid model to simulate high-density plasma transportation in the diffusion region through the entire macropulse period. The full momentum equation taking inertia force into consideration is applied for ion momentum conservation in the fluid model instead of using the drift-diffusion approximation, which ensures validity of the simulation for low-pressure plasmas. The deposition flux as well as the kinetic and potential energy fluxes transferred to the growing films are calculated by the hybrid model. Microstructure evolution of the DOMS deposited Cr thin films from zone I to zone T is attributed to the growing kinetic and potential energies as the charging voltage increases according to the structure zone diagram. The deposition rate loss in DOMS is explained by the back attraction effect, sputtering yield effect, and densification of the films.

Funder

National Basic Research Program of China

Fundação para a Ciência e a Tecnologia

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3