Micro-macro consistency in multiscale modeling: Score-based model assisted sampling of fast/slow dynamical systems

Author:

Crabtree E. R.1ORCID,Bello-Rivas J. M.1ORCID,Kevrekidis I. G.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, USA

Abstract

A valuable step in the modeling of multiscale dynamical systems in fields such as computational chemistry, biology, and materials science is the representative sampling of the phase space over long time scales of interest; this task is not, however, without challenges. For example, the long term behavior of a system with many degrees of freedom often cannot be efficiently computationally explored by direct dynamical simulation; such systems can often become trapped in local free energy minima. In the study of physics-based multi-time-scale dynamical systems, techniques have been developed for enhancing sampling in order to accelerate exploration beyond free energy barriers. On the other hand, in the field of machine learning (ML), a generic goal of generative models is to sample from a target density, after training on empirical samples from this density. Score-based generative models (SGMs) have demonstrated state-of-the-art capabilities in generating plausible data from target training distributions. Conditional implementations of such generative models have been shown to exhibit significant parallels with long-established—and physics-based—solutions to enhanced sampling. These physics-based methods can then be enhanced through coupling with the ML generative models, complementing the strengths and mitigating the weaknesses of each technique. In this work, we show that SGMs can be used in such a coupling framework to improve sampling in multiscale dynamical systems.

Funder

U.S. Department of Energy

Air Force Office of Scientific Research

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3