Nonlinear Dimensionality Reduction by Locally Linear Embedding

Author:

Roweis Sam T.1,Saul Lawrence K.2

Affiliation:

1. Gatsby Computational Neuroscience Unit, University College London, 17 Queen Square, London WC1N 3AR, UK.

2. AT&T Lab—Research, 180 Park Avenue, Florham Park, NJ 07932, USA.

Abstract

Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference30 articles.

1. M. L. Littman D. F. Swayne N. Dean A. Buja in Computing Science and Statistics: Proceedings of the 24th Symposium on the Interface H. J. N. Newton Ed. (Interface Foundation of North America Fairfax Station VA 1992) pp. 208–217.

2. T. Cox M. Cox Multidimensional Scaling (Chapman & Hall London 1994).

3. Takane Y., Young F. W., Psychometrika 42, 7 (1977).

4. J. Tenenbaum in Advances in Neural Information Processing 10 M. Jordan M. Kearns S. Solla Eds. (MIT Press Cambridge MA 1998) pp. 682–688.

5. The set of neighbors for each data point can be assigned in a variety of ways: by choosing the K nearest neighbors in Euclidean distance by considering all data points within a ball of fixed radius or by using prior knowledge. Note that for fixed number of neighbors the maximum number of embedding dimensions LLE can be expected to recover is strictly less than the number of neighbors.

Cited by 9804 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3